Denne, W. A. (1977). Acta Cryst. A 33, 438-440.
Dunning, T. H. JR (1970). J. Chem. Phys. 53, 2823-2833.
Eisenstein, M. (1978). Unpublished.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Harel, M. \& Hirshfeld, F. L. (1975). Acta Cryst. B31, 162-172.
Hase, H. L., Schulte, K. W. \& Schweig, A. (1977). Angew. Chem. Int. Ed. Engl. 16, 257-260.
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Hirshfeld, F. L. (1977a). Theor. Chim. Acta, 44, 129-138.
Hirshfeld, F. L. (1977b). Isr. J. Chem. 16, 226-229.
Hope, H. \& Ottersen, T. (1978). Acta Cryst. B34, 36233626.

Hope, H. \& Ottersen, T. (1979). Acta Cryst. B35, 370372.

Huzinaga, S. (1965). J. Chem. Phys. 42, 1293-1302.
Irngartinger, H., Hase, H. L., Schulte, K. W. \& Schweig, A. (1977). Angew. Chem. Int. Ed. Engl. 16, 187-189.

Itoh, K. \& Shimanouchi, T. (1972). J. Mol. Spectrosc. 42, 86-99.
Kurland, R. J. \& Wilson, E. B. Jr (1957). J. Chem. Phys. 27, 585-590.
Metzgar, T. D. \& Bloor, J. E. (1973). Quantum Chem. Program Exchange, 10, 238.
Ottersen, T. (1974). Acta Chem. Scand. Ser. A, 28, 11451149.

Rees, B. (1977). Isr. J. Chem. 16, 180-186.
Rees, B. \& Mitschler, A. (1976). J. Am. Chem. Soc. 98, 7918-7924.
Stenkamp, L. Z. \& Davidson, E. R. (1977). Theor. Chim. Acta, 44, 405-419.
Stevens, E. D., Rys, J. \& Coppens, P. (1978). J. Am. Chem. Soc. 100, 2324-2328.
Suzuki, I. (1960). Bull. Chem. Soc. Jpn, 33, 1359-1365.
Tellgren, R., Thomas, J. O. \& Olovsson, I. (1977). Acta Cryst. B33, 3500-3504.
Thomas, J. O. (1977). Acta Cryst. B33, 2867-2876.

Stereochemical Investigations of the Methyl α-D-threo- and Ethyl α-D-erythro Anomers of 4,6-Di-O-acetyl-2,3-dideoxyhex-2-enopyranoside by X-ray Diffraction Methods

By J. W. Krajewski, Z. Urbańczyk-Lipkowska and P. Gluziński
Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland
and J. Bleidelis and A. Kemme
Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga, USSR

(Received 31 January 1979; accepted 6 July 1979)

Abstract

The stereochemistries of methyl 4,5-di-O-acetyl-2,3-dideoxy- α-D-threo-hex-2-enopyranoside (THREO) and ethyl 4,6-di- O-acetyl-2,3-dideoxy- α-D-erythro-hex-2enopyranoside (ERYTHRO) in the crystalline state have been determined by X-ray diffraction studies. THREO: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}, M_{r}=244 \cdot 24$, monoclinic, space group $P 2_{1}(c$ unique axis), $Z=2, \mu(\mathrm{Cu} K \alpha)=0.92$ $\mathrm{mm}^{-1}, d_{m}=1.29, d_{c}=1.30 \mathrm{Mg} \mathrm{m}{ }^{-3}, a=5.160(1)$, $b=8.971$ (2), $c=13.903$ (2) $\AA, \gamma=103.62(1)^{\circ}, V=$ $622.4 \AA^{3}$. ERYTHRO: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{6}, M_{r}=258 \cdot 26$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, Z=4, \mu(\mathrm{Cu} K \alpha)=$ $0.872 \mathrm{~mm}^{-1}, d_{m}=1.27, d_{c}=1.29 \mathrm{Mg} \mathrm{m}^{-3}, a=$ 5.377 (1), $b=14.839$ (2),,$\stackrel{c}{c}=16.641$ (2) $\AA, V=$ $1327 \cdot 8 \AA^{3}$. The six-membered unsaturated hetero rings appear to have the half-chair ${ }^{0} \mathrm{H}_{5}$ conformation in both cases. The 2-enopyranosides differ from each other in their 4-O-acetyl configurations: pseudo-axial in THREO and pseudo-equatorial in ERYTHRO.

Introduction

Recently, Grynkiewicz, Priebe \& Zamojski (1979) published a series of syntheses leading to various alkyl 4,6-di- O-acetyl-2,3-dideoxy- α-D-threo(and -erythro)-hex-2-enopyranosides. Two of these, the methyl α-D-threo- (THREO, m.p. 332 K) and ethyl α-D-erythro(ERYTHRO, m.p. 352 K) anomers, have been chosen for comparative X-ray diffraction investigations from the point of view of their conformational and geometrical relations.

Experimental

Colourless crystals of THREO and ERYTHRO were obtained by slow evaporation of their solutions in aqueous ethanol. The crystals appear to be unstable in air. Selected crystals were sealed in capillary tubes and used for intensity-collecting procedures. The measurement details and results are presented in Table 1.
© 1979 International Union of Crystallography

Both structures were solved by a direct multisolution method using the program SHELX (Sheldrick, 1976). The refinements of the atomic coordinates were carried out using the XRAY 70 system (Stewart, Kundell \& Baldwin, 1970). The atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). A common computing scheme was applied to both cases: the first refinement step

Table 1. Crystal data

	THREO	ERYTHRO*

[^0]involved individual isotropic thermal parameters and unit weights; in the second step anisotropic thermal parameters and statistical weights ($w=1 / \sigma_{F}^{2}$) were used. The last refinement procedure was performed with geometrically calculated (program $X A N A D U$, Roberts \& Sheldrick, 1975) positions for the H atoms, all their parameters being held invariant. The final reliability factor values were: for THREO: $R=0 \cdot 10$, $R_{w}=0.097$, average shift/error $=0.03$; for ERYTHRO: $R=0.079, R_{w}=0.076$, average shift/error $=0.04$. The refined atomic coordinates for both α-anomers are presented in Table 2.*

Discussion

The calculated bond lengths and bond angles for the THREO and ERYTHRO molecules are listed in Tables 3 and 4. The steric structure of the compounds may be seen from the ORTEP diagrams (Johnson, 1965) (Fig. 1).

The unsaturated pyranoside rings in both anomeric molecules of THREO and ERYTHRO are found to have similar geometries. The respective interatomic distances are: for $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right) 1.37$ (3) and 1.33 (2) \AA; for $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right) \quad 1.47(2)$ and $1.52(2) \AA$

[^1]Table 2. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for THREO and ERYTHRO
E.s.d.'s are in parentheses.

	THREO				ERYTHRO			
	x	y	z	$B_{\text {eq. }}{ }^{*}$	x	y	z	$B_{\text {eq. }}{ }^{*}$
C(1)	-2567 (34)	1884 (18)	549 (11)	$6 \cdot 0$ (8)	1173 (21)	875 (7)	4152 (6)	4.0 (5)
C(2)	-2836 (41)	3183 (23)	-99 (12)	7.3 (10)	2323 (19)	1555 (7)	4717 (7)	4.0 (5)
C(3)	-1431 (33)	4658 (21)	70 (12)	$6 \cdot 0$ (9)	1880 (19)	1526 (8)	5503 (7)	$4 \cdot 2$ (5)
C(4)	435 (34)	5017 (18)	884 (12)	$6 \cdot 2$ (8)	107 (19)	838 (8)	5856 (6)	$3 \cdot 7$ (5)
C(5)	1064 (34)	3538 (17)	1294 (11)	$5 \cdot 0$ (7)	-1527 (18)	417 (6)	5200 (6)	$3 \cdot 3$ (5)
C(6)	2500 (32)	3821 (17)	2235 (12)	$6 \cdot 6$ (9)	-2869 (22)	-366 (7)	5524 (6)	$4 \cdot 2$ (5)
C(7)	469 (26)	7019 (16)	2039 (13)	3.8 (8)	-944 (25)	1236 (8)	7210 (7)	4.3 (6)
C(8)	-1300 (37)	7438 (20)	2829 (13)	7.5 (9)	-2957 (23)	1717 (8)	7694 (6)	$5 \cdot 2$ (6)
C(9)	4951 (36)	2463 (20)	3199 (14)	6.4 (9)	-6235 (21)	-1312 (7)	5076 (8)	$4 \cdot 1$ (5)
C(10)	5690 (34)	956 (19)	3349 (13)	7.4 (10)	-7363 (24)	-1751 (7)	4355 (6)	$4 \cdot 6$ (6)
C(11)	-1150 (41)	-436 (17)	496 (15)	7.3 (10)	-1671 (27)	826 (8)	3043 (6)	$5 \cdot 2$ (6)
C(12)	-	-	-	-	-3471 (26)	1416 (8)	2591 (6)	$5 \cdot 3$ (6)
O(1)	-1259 (19)	2392 (11)	1417 (-)	$4 \cdot 8$ (5)	62 (12)	150 (4)	4559 (4)	$3 \cdot 2$ (3)
$\mathrm{O}(2)$	-1137(25)	975 (12)	25 (8)	$6 \cdot 3$ (6)	-559 (13)	1370 (5)	3676 (4)	3.9 (3)
$\mathrm{O}(3)$	-1015 (19)	5704 (11)	1644 (9)	$5 \cdot 6$ (5)	-1560 (13)	1284 (5)	6417 (4)	4.4 (4)
O(4)	2738 (20)	7528 (12)	1935 (12)	$6 \cdot 7$ (7)	926 (25)	892 (7)	7443 (5)	5.8 (5)
O(5)	3220 (25)	2377 (12)	2464 (9)	7.0 (6)	-4304 (13)	-747 (5)	4869 (4)	4.0 (3)
O(6)	5786 (27)	3596 (14)	3665 (11)	8.7 (8)	-6819 (21)	-1433 (5)	5762 (5)	$5 \cdot 0$ (4)

Table 3. Bond distances (\AA) with e.s.d.'s in parentheses
THREO ERYTHRO

Ring		
C(1)-C(2)	$1.51(3)$	$1.51(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.37(3)$	$1.33(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.47(2)$	$1.52(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.55(2)$	$1.54(1)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.39(2)$	$1.42(1)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.41(2)$	$1.41(1)$
$\mathrm{O}(3)-$ acetyl		
$\mathrm{C}(4)-\mathrm{O}(3)$	$1.51(2)$	$1.45(1)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.36(2)$	$1.36(1)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.53(3)$	$1.53(2)$
$\mathrm{C}(7)-\mathrm{O}(4)$	$1.16(2)$	$1.19(2)$
Acetoxy-methylene		
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.50(2)$	$1.47(1)$
$\mathrm{C}(6)-\mathrm{O}(5)$	$1.46(2)$	$1.45(1)$
$\mathrm{O}(5)-\mathrm{C}(9)$	$1.35(2)$	$1.38(1)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.50(3)$	$1.49(2)$
$\mathrm{C}(9)-\mathrm{O}(6)$	$1.20(2)$	$1.20(2)$
	Methoxy	Ethoxy
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.42(2)$	$1.43(1)$
$\mathrm{O}(2)-\mathrm{C}(11)$	$1.42(2)$	$1.46(1)$
$\mathrm{C}(11)-\mathrm{C}(12)$	-	$1.51(2)$

Fig. 1. ORTEP diagrams of the molecules of (a) THREO and (b) ERYTHRO. The projections are normal to the $\mathrm{C}(1)-\mathrm{C}(2)-$ $\mathrm{C}(3)-\mathrm{C}(4)$ least-squares planes, and the thermal ellipsoids are set to the 40% probability level. H atoms are shown as spheres of conventional size.

Table 4. Bond angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

Ring		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113 (1)	112.6 (9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121 (2)	121 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121 (2)	121 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	111 (1)	109.4 (9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	111 (1)	107.6 (8)
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	113 (1)	113.8 (7)
$\mathrm{O}(3)-\mathrm{acetyl}$		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	105 (1)	109.4 (9)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(3)$	108 (2)	$106 \cdot 8$ (8)
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(7)$	114 (1)	116.6 (8)
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	105 (1)	108 (1)
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(4)$	127 (2)	123 (1)
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	127 (2)	129 (1)
Acetoxy-methylene		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112 (1)	$110 \cdot 0$ (8)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	109 (1)	110.4 (8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(5)$	105 (1)	$107 \cdot 1$ (8)
$\mathrm{C}(6)-\mathrm{O}(5)-\mathrm{C}(9)$	115 (1)	$116.7(8)$
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	111 (1)	112 (1)
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{O}(6)$	124 (2)	122 (1)
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	125 (2)	126 (1)
	Methoxy	Ethoxy
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	111 (1)	112.6 (9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)$	107 (1)	115.6 (8)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(11)$	112 (1)	112.7 (8)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	-	107.7 (9)

(average). The bond angles $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$ for THREO and ERYTHRO differ slightly: 111 (1) and $107.6(8)^{\circ}$ respectively.
Some literature geometrical data on alkyl 2,3unsaturated pyranoside rings are: for the $\mathrm{C}\left(s p^{2}\right)-$ $\mathrm{C}\left(s p^{2}\right)$ and both $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ bond lengths and for the $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$ angle: 1.318 (7), 1.477 (7), 1.491 (7) $\AA, 111.7$ (4) ${ }^{\circ}$ (López de Lerma, MartínezCarrera \& García-Blanco, 1973); 1.323 (4), 1.503 (4), 1.511 (4) $\AA, 111.5$ (2) ${ }^{\circ}$ (Kojić-Prodić, Rogić \& RuzićToroš, 1976); $1.31,1.44,1.52 \AA, 106.8^{\circ}$ (last value calculated from reported data) (Stockhuyzen \& Chung Chieh, 1976).
Similarly, the geometry of the endocyclic $\mathrm{C}-\mathrm{O}$ bonds was found to be very close in both α-anomers: the bond lengths $C(5)-O(1)$ and $O(1)-C(1)$ are 1.39 (2) and 1.41 (2) \AA for THREO, and 1.42 (1) and 1.41 (1) \AA for ERYTHRO. The angle at $O(1)$ is 113 (1) and $113.8(7)^{\circ}$ for THREO and ERYTHRO respectively. Kojić-Prodić et al. (1976) reported for the same geometry elements: 1.440 (3), 1.394 (3) \AA and $112.5(2)^{\circ}$. Much more dissymmetrized endocyclic $\mathrm{C}-\mathrm{O}$ bonds were found recently for a $3,4,6$-tri- $O-$ acetyl-D-1,2-dideoxypyranoside derivative (GLUCAL) (Krajewski, Urbañczyk-Lipkowska, Gluziński, Bleidelis \& Kemme, 1978, 1979; Vangehr, Luger \& Paulsen, 1979): the bond lengths $\mathrm{C}(5)-\mathrm{O}(1)$ and
$\mathrm{O}(1)-\mathrm{C}(1)$ found were $1.433(6)$ and $1.364(6) \AA$,
respectively, but the $\mathrm{O}(1)$ angle value was very close to respectively, but the $\mathrm{O}(1)$ angle value was very close to
those reported above: $113 \cdot 8(4)^{\circ}$. Such dissymmetry in the case of the GLUCAL molecule may be explained partly by different hybridization of both bonded C atoms $\left[\mathrm{C}(5)=\mathrm{C}\left(s p^{3}\right)\right.$ and $\mathrm{C}(1)=\mathrm{C}\left(s p^{2}\right)$]. Only a small difference in the endocyclic $\mathrm{C}-\mathrm{O}$ bond lengths was found in a 3,4 -unsaturated pyranoside (Krajewski, Urbańczyk-Lipkowska \& Gluziński, 1978, 1979): 1.43 (1) and 1.41 (1) \AA, respectively, with the O (1) angle $114.0(3)^{\circ}$.

The methoxy or ethoxy substituents attached to the anomeric $\mathrm{C}(1)$ in both presently investigated enopyranosides differ in their $\mathrm{C}-\mathrm{O}$ bond lengths. In THREO the values found for the methoxy group are both nearly equal [1.42 (2) \AA], whereas in ERYTHRO they vary significantly $[\mathrm{C}(1)-\mathrm{O}(2) 1.43$ (1), $\mathrm{O}(2)-$ $\mathrm{C}(11) 1.46$ (1) \AA]. The $\mathrm{O}(2)$ angles are 112 (1) and $112.7(8)^{\circ}$ respectively. These differences may be partly due to the elongated carbon chain in the ethoxy substituent.

The geometry of $\mathrm{C}(4)$ attached to the O-acetyl group differs in both compounds investigated, mostly in respect of the bond angles. The respective values differ by $2-4.5^{\circ}$ (Table 4). Similarly, the $C(4)-O(3)$ bond length also varies strongly: 1.51 (2) \AA for the THREO and 1.45 (1) \AA for the ERYTHRO anomer. However, the $O(3)-C(7)$ bond lengths are equal within the mean e.s.d. value: 1.36 (2) and 1.36 (1) \AA respectively. For O-acetyl groups attached to ring C atoms, Kojić-Prodić et al. (1976) and Krajewski, Urbañczyk-Lipkowska, Gluziński, Bleidelis \& Kemme (1979) reported for the $\mathrm{C}_{\text {ring }}-\mathrm{O}$ bonds the values $1.435-1.448 \AA$, and for ${ }^{-}{ }^{\text {ring }} \mathrm{C}_{\text {carbonyl }}$ bonds the value $1.357 \AA$ (average). Thus, the $\mathrm{C}(4)-\mathrm{O}(3)$ bond length in THREO may be regarded as unusually long.
$\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(4)$ in both molecules form an approximate plane. $\mathrm{O}(1)$ and $\mathrm{C}(5)$ deviate from this plane (calculated as a least-squares plane) in opposite directions. The deviations of the O atoms are approximately equal in the THREO and ERYTHRO anomers ($+0.31 \AA$), unlike the $C(5)$ deviations (-0.39 and $-0.45 \AA$ respectively). The values found for ERYTHRO are in full agreement with those reported by Cesario, Guilhem \& Martin (1977). The

Table 5. Comparison of ring torsion angles (${ }^{\circ}$)

	ERYTHRO	THREO	Equivalent angle in cyclohexene*
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-3.0(1.6)	-1.1 (2.7)	0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	-67.5 (1.0)	-64.9 (1.7)	$-60 \cdot 2$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-11.5 (1.4)	-13.2 (2.6)	-15.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-15.9 (1.4)	-14.8(2.4)	-15.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	48.5 (1.0)	46.6 (1.7)	44.9
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	48.3 (1.0)	46.8 (1.9)	44.9

Table 6. Intermolecular distances less than $3.5 \AA$ with e.s.d.'s in parentheses

THREO	
$\mathrm{O}(1)-\mathrm{C}(9)^{\mathrm{i}}$	$3.17(2)$
$\mathrm{O}(1)-\mathrm{C}(10)^{i}$	$3.23(2)$
$\mathrm{O}(1)-\mathrm{C}(5)^{i}$	$3.20(2)$
$\mathrm{O}(3)-\mathrm{C}(6)^{i}$	$3.47(2)$
$\mathrm{O}(4)-\mathrm{C}(8)^{i}$	$3.34(2)$
$\mathrm{C}(11)-\mathrm{C}(7)^{\mathrm{i}}$	$3.38(3)$
$\mathrm{O}(2)-\mathrm{C}(8)^{\mathrm{v}}$	$3.48(2)$
$\mathrm{O}(2)-\mathrm{C}(10)^{\mathrm{vi}}$	$3.47(2)$

ERYTHRO	
$\mathrm{O}(1)-\mathrm{C}(9)^{i}$	$3.07(1)$
$\mathrm{O}(1)-\mathrm{C}(10)^{\prime}$	$3.16(1)$
$\mathrm{O}(1)-\mathrm{O}(5)^{\prime}$	$3.35(1)$

Symmetry code
(i) $1+x, y, z$
(v) $-x, 1-y, \frac{1}{2}+z$
(ii) $x, 1+y, z$
(vi) $-x,-y, \frac{1}{2}+z$
conformation of both enopyranoside rings may then be defined as a half-chair, ${ }^{0} H_{5}$ (for nomenclature see Schwartz, 1973), in agreement with the results of other physicochemical observations.

Table 5 presents the torsion angles for the sixmembered hetero-rings of both anomers compared with their equivalent values in the half-chair cyclohexene molecule (Chiang \& Bauer, 1969). The differences (deviation from C_{2} symmetry) due to the presence of the O hetero-atom in the pyranoside rings are not greater than $2-3^{\circ}$ (taking into account the e.s.d. values). The pyranoside ring in ERYTHRO appears to be slightly more distorted than that in THREO.
The O-acetyl chain configuration at $\mathrm{C}(4)$ may be established from the following:

- the deviations of $\mathrm{O}(3)$ from the least-squares plane formed by $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(4)$ are in opposite directions $(+1.42$ and $-0.98 \AA$, for THREO and ERYTHRO respectively).
- the $\mathrm{C}(4)-\mathrm{O}(3)$ bonds form with their projections on the above plane the angles 109 and 138°, for THREO and ERYTHRO respectively.

Thus, the C(4)-O-acetyl chain configurations may be defined as pseudo-axial in THREO and pseudoequatorial in ERYTHRO.

The acetoxymethylene and alkoxy substituents are similarly situated with respect to the rings in both compounds. They are pseudo-equatorial and pseudo-axial, respectively, and lie below the rings.

Table 6 gives the intermolecular distances less than $3.5 \AA$. It can be seen that besides the much more numerous relatively strong intermolecular interactions observed for the THREO anomer, the most remarkable similarity in the cell packing involves the van der Waals interactions between $O(1)$ and $C(9)$, and between $C(10)$ and $O(5)$ of the neighbouring molecule generated by an a translation.

The authors are indebted to Professor Dr A. Zamojski, Dr A. Banaszek and Dr G. Grynkiewicz for supplying the samples and for valuable discussions.

The courtesy of the Head Manager, Magister A. Plenkiewicz, and Dr A. Koczyk of the Research and Development Center of Industrial Projecting 'BISTYP', Warszawa, enabled the authors to prepare the ORTEP diagrams.

References

Cesario, M., Guilhem, J. \& Martin, J.-C. (1977). Fourth European Crystallographic Meeting, Oxford, England, pp. 458-460.
Chiang, J. F. \& Bauer, S. H. (1969). J. Am. Chem. Soc. 91, 1898-1901.
Grynkiewicz, G., Priebe, W. \& Zamojski, A. (1979). Carbohydr. Res. 68, 33-41.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Kojić-Prodić, B., Rogić, V. \& Ruzić-Toroš, Z. (1976). Acta Cryst. B32, 1833-1838.
Krajewski, J. W., Urbańczyk-Lipkowska, Z. \& Gluziński, P. (1978). Acta Cryst. A34, S86.

Krajewski, J. W., Urbańczyk-Lipkowska, Z. \& Gluziński, P. (1979). Acta Cryst. B35, 519-522.
Krajewski, J. W., Urbańczyk-Lipkowska, Z., Gluziński, P., Bleidelis, J. \& Kemme, A. (1978). Acta Cryst. A34, S85-S86.
Krajewski, J. W., Urbańczyk-Lipkowska, Z., Gluziński, P., Bleidelis, J. \& Kemme, A. (1979). Acta Cryst. B35, 1248-1250.
López de Lerma, J., Martínez-Carrera, S. \& GarcíaBlanco, S. (1973). Acta Cryst. B29, 537-541.
Roberts, P. \& Sheldrick, G. M. (1975). Program XANADU. Univ. of Cambridge, England.
Schwartz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505-508.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stokhuyzen, R. \& Chung Chieh (1976). J. Chem. Soc. Perkin Trans. 2, pp. 481-483.
Vangehr, K., Luger, P. \& Paulsen, H. (1979). Carbohydr. Res. 70, 1-11.

Acta Cryst. (1979). B35, 2629-2634

The Crystal and Molecular Structure of 1,5-Diphenylcarbazone

By N. M. Blaton, O. M. Peeters, C. J. De Ranter* and G. J. Willems
Laboratorium voor Analytische Scheikunde, Instituut voor Farmaceutische Wetenschappen, KU Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

(Received 8 March 1979; accepted 6 July 1979)

Abstract

Crystals of 1,5 -diphenylcarbazone, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$, are triclinic, space group $P \overline{1}, a=9.639(1), b=$ 11.250 (1), $c=12.840$ (1) $\AA, a=74.82$ (1), $\beta=$ 86.33 (1), $\gamma=67.37$ (1) ${ }^{\circ}, V=1239 \AA^{3}, Z=4$. The structure was determined from three-dimensional diffractometer data by the multi-solution technique (MULTAN) from 2010 independent reflections and refined by a least-squares block-diagonal approximation to a final R value of 0.075 . The asymmetric unit contains two molecules of different conformation having nearly identical bond distances and bond angles. The diphenylcarbazone molecule differs from its sulphur analogue, dithizone. It is not planar and there is only π electron delocalization in the hydrazo chain of the molecule. The molecules in the cell are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds while two other $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$

[^2]0567-7408/79/112629-06\$01.00
hydrogen bonds join the molecules of successive cells in chains parallel to [100].

Introduction

1,5-Diphenylcarbazone (hereinafter DPCO) forms highly coloured metal complexes that provide the basis for its use as a sensitive reagent for the detection and colorimetric determination of metal ions. In particular, those reactions with $\mathrm{Cr}^{\mathrm{VI}}, \mathrm{Cr}^{\mathrm{III}}$ and $\mathrm{Cr}^{\mathrm{II}}$ have been studied in this laboratory (Willems, Blaton, Peeters \& De Ranter, 1977).

The IR spectrum of pure DPCO in CHCl_{3} or CCl_{4} shows two absorption bands in the $3000-4000 \mathrm{~cm}^{-1}$ region at 3410 and $3350 \mathrm{~cm}^{-1}$. As the DPCO concentration increases the intensity of the two bands decreases and three new bands appear at 3275, 3195 and $3075 \mathrm{~cm}^{-1}$. Kemula \& Janowski (1966) ascribe: (i) the $3410 \mathrm{~cm}^{-1}$ band to free $\mathrm{N}-\mathrm{H}$ stretching vibration of © 1979 International Union of Crystallography

[^0]: * cf. Cesario, Guilhem \& Martin (1977).
 \dagger Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga, USSR.
 \ddagger SLAF \& BS, Kraków, Poland.
 $\S 899$ reflections with $I>3 \sigma_{I}$ were used in the last refinement step.

[^1]: * Lists of structure factors and anisotropic thermal parameters for both compounds have been deposited with the British Library Lending Division as Supplementary publication No. SUP 34642 (39 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * To whom correspondence should be addressed.

